Charge your laptop in a minute or your EV in 10? Supercapacitors can help
一分鐘即可為您的筆記本電腦充電,或者 10 分鐘即可為您的電動(dòng)汽車(chē)充電? 超級(jí)電容器可以提供幫助
Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes.
想象一下,如果你的筆記本電腦或手機(jī)報(bào)廢后可以在一分鐘內(nèi)充電,或者如果一輛電動(dòng)汽車(chē)可以在 10 分鐘內(nèi)充滿電。
Published today in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta's lab discovered how tiny charged particles, called ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.
安庫(kù)爾·古普塔實(shí)驗(yàn)室的研究人員今天發(fā)表在《美國(guó)國(guó)家科學(xué)院院刊》上,發(fā)現(xiàn)了稱為離子的微小帶電粒子如何在微小孔隙的復(fù)雜網(wǎng)絡(luò)中移動(dòng)。 化學(xué)和生物工程助理教授古普塔說(shuō),這一突破可能會(huì)導(dǎo)致更高效的儲(chǔ)能設(shè)備的開(kāi)發(fā),例如超級(jí)電容器。
Gupta explained that several chemical engineering techniques are used to study flow in porous materials such as oil reservoirs and water filtration, but they have not been fully utilized in some energy storage systems. The discovery is significant not only for storing energy in vehicles and electronic devices but also for power grids, where fluctuating energy demand requires efficient storage to avoid waste during periods of low demand and to ensure rapid supply during high demand.
古普塔解釋說(shuō),幾種化學(xué)工程技術(shù)被用來(lái)研究油藏和水過(guò)濾等多孔材料中的流動(dòng),但它們?cè)谝恍﹥?chǔ)能系統(tǒng)中尚未得到充分利用。 這一發(fā)現(xiàn)不僅對(duì)于車(chē)輛和電子設(shè)備中的能源存儲(chǔ)具有重要意義,而且對(duì)于電網(wǎng)也具有重要意義,在電網(wǎng)中,波動(dòng)的能源需求需要有效的存儲(chǔ),以避免在低需求期間的浪費(fèi),并確保在高需求期間的快速供應(yīng)。